Scattering of Low-Frequency Radiation by a Gyrating Electron
نویسنده
چکیده
The scattering of electromagnetic radiation by the particle gyrating in an external magnetic field is considered. Particular attention is paid to the low-frequency case, when the frequencies of incident radiation are much less than the electron gyrofrequency. The spectral and polarization features of the scattering cross-section are analyzed in detail. It is found that the scattering transfers the low-frequency photons to high harmonics of the gyrofrequency, into the range of the synchrotron emission of the electron. The total scattering cross-section appears much larger than that for the particle at rest. The problem studied is directly applicable to the radio wave scattering in the magnetosphere of a pulsar. The particles acquire relativistic rotational energies as a result of resonant absorption of the high-frequency radio waves and concurrently scatter the low-frequency radio waves, which are still below the resonance. It is shown that the scattering can affect the radio intensity and polarization at the lowest frequencies and can compete with the resonant absorption in contributing to the low-frequency turnover in the pulsar spectrum. Moreover, the scattering can be an efficient mechanism of the pulsar high-energy emission, in addition to the synchrotron re-emission of the particles. Other astrophysical applications of the scattering by gyrating particles are pointed out as well.
منابع مشابه
Laboratory simulation of magnetospheric chorus wave generation
Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. A laboratory experiment (Van Compernolle et al 2015 Phys. Rev. Lett. 114 245002, An et al 2016 Geophys. Res. Lett.) in the larg...
متن کاملInterpretation of the Low-Frequency Peculiarities in the Radio Profile Structure of the Crab Pulsar
The theory of magnetized induced scattering off relativistic gyrating particles is developed. It is directly applicable to the magnetosphere of a pulsar, in which case the particles acquire gyration energies as a result of resonant absorption of radio emission. In the course of the radio beam scattering into background the scattered radiation concentrates along the ambient magnetic field. The s...
متن کاملThe radiative transfer equations for Compton scattering of polarized low frequency radiation on a hot electron gas
We deduce the equations that describe how polarized radiation is Comptonized by a hot electron gas. Low frequencies are considered, and the equations are expanded to second order in electron velocities. Induced scattering terms are included and a Maxwellian velocity distribution for the electrons is assumed. The special case of an axisymmetric radiation field is also considered, and the corresp...
متن کاملPhysical characteristics of electron beam from conventional and beam shaper IOERT applicator: A comparison study
Introduction: Intraoperative electron radiation therapy (IOERT) is one of the cancer treatment techniques that delivers high doses to tumor bed during surgery. IOERT can be performed by either conventional LINACs or dedicated IORT accelerators such as LIAC (Light Intraoperative Accelerator). Two types of applicators can be used with LIAC dedicated accelerator including conventi...
متن کاملInvestigating the Effects of Cut-Out Shield on High-Energy Electron Fields Using MAGIC Normoxic Polymer Gel
Introduction The use of cut-outs in electron applicators make changes on output, isodose, and percentage depth dose (PDD) curves. These changes and electron beam dose distribution in the form of three-dimensional (3D) can be measured by gel dosimeters. Materials and Methods Dosimetry was performed with and without a square shield (6×6 cm2 field). The energies were 4, 9, and 16 MeV and phantom w...
متن کامل